skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lubana, Ekdeep Singh"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study neural network loss landscapes through the lens of mode connectivity, the observation that minimizers of neural networks retrieved via training on a dataset are connected via simple paths of low loss. Specifically, we ask the following question: are minimizers that rely on different mechanisms for making their predictions connected via simple paths of low loss? We provide a definition of mechanistic similarity as shared invariances to input transformations and demonstrate that lack of linear connectivity between two models implies they use dissimilar mechanisms for making their predictions. Relevant to practice, this result helps us demonstrate that naive fine-tuning on a downstream dataset can fail to alter a model’s mechanisms, e.g., fine-tuning can fail to eliminate a model’s reliance on spurious attributes. Our analysis also motivates a method for targeted alteration of a model’s mechanisms, named connectivity-based fine-tuning (CBFT), which we analyze using several synthetic datasets for the task of reducing a model’s reliance on spurious attributes. 
    more » « less
  2. Catastrophic forgetting undermines the effectiveness of deep neural networks (DNNs) in scenarios such as continual learning and lifelong learning. While several methods have been proposed to tackle this problem, there is limited work explaining why these methods work well. This paper has the goal of better explaining a popularly used technique for avoiding catastrophic forgetting: quadratic regularization. We show that quadratic regularizers prevent forgetting of past tasks by interpolating current and previous values of model parameters at every training iteration. Over multiple training iterations, this interpolation operation reduces the learning rates of more important model parameters, thereby minimizing their movement. Our analysis also reveals two drawbacks of quadratic regularization: (a) dependence of parameter interpolation on training hyperparameters, which often leads to training instability and (b) assignment of lower importance to deeper layers, which are generally the place forgetting occurs in DNNs. Via a simple modification to the order of operations, we show these drawbacks can be easily avoided, resulting in 6.2% higher average accuracy at 4.5% lower average forgetting. We confirm the robustness of our results by training over 2000 models in different settings. 
    more » « less
  3. We propose an unsupervised learning method that exploits client heterogeneity to enable privacy preserving, SOTA performance unsupervised federated learning. 
    more » « less